A detailed view on sulphur metabolism at the cellular and whole-plant level illustrates challenges in metabolite flux analyses.

نویسندگان

  • Heinz Rennenberg
  • Cornelia Herschbach
چکیده

Understanding the dynamics of physiological process in the systems biology era requires approaches at the genome, transcriptome, proteome, and metabolome levels. In this context, metabolite flux experiments have been used in mapping metabolite pathways and analysing metabolic control. In the present review, sulphur metabolism was taken to illustrate current challenges of metabolic flux analyses. At the cellular level, restrictions in metabolite flux analyses originate from incomplete knowledge of the compartmentation network of metabolic pathways. Transport of metabolites through membranes is usually not considered in flux experiments but may be involved in controlling the whole pathway. Hence, steady-state and snapshot readings need to be expanded to time-course studies in combination with compartment-specific metabolite analyses. Because of species-specific differences, differences between tissues, and stress-related responses, the quantitative significance of different sulphur sinks has to be elucidated; this requires the development of methods for whole-sulphur metabolome approaches. Different cell types can contribute to metabolite fluxes to different extents at the tissue and organ level. Cell type-specific analyses are needed to characterize these contributions. Based on such approaches, metabolite flux analyses can be expanded to the whole-plant level by considering long-distance transport and, thus, the interaction of roots and the shoot in metabolite fluxes. However, whole-plant studies need detailed empirical and mathematical modelling that have to be validated by experimental analyses.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Predictive sulfur metabolism – a field in flux

The key role of sulfur metabolites in response to biotic and abiotic stress in plants, as well as their importance in diet and health has led to a significant interest and effort in trying to understand and manipulate the production of relevant compounds. Metabolic engineering utilizes a set of theoretical tools to help rationally design modifications that enhance the production of a desired me...

متن کامل

Flux an important, but neglected, component of functional genomics.

Genomics approaches aimed at understanding metabolism currently tend to involve mainly expression profiling, although proteomics and steady-state metabolite profiling are increasingly being carried out as alternative strategies. These approaches provide rich information on the inventory of the cell. It is, however, of growing importance that such approaches are augmented by sophisticated integr...

متن کامل

اثرات آلودگی دی‌اکسیدگوگرد بر برخی ویژگی‌های بیوشیمیایی یونجه (Medicago sativa) تلقیح ‌شده با ریزوبیوم

Sulphur dioxide (SO2) is one of the major atmospheric contaminant that induces negatively effects in the cellular biochemistry and physiology of the plants. However, Rhizobium inoculation can cause increas in plant resistance to abiotic and biotic stresses. In this study, effects of different concentrations of Sulphur dioxide gas (0, 0.5, 1, 1.5 and 2 ppm) on photosynthetic pigments, proline, p...

متن کامل

A systematic simulation of the effect of salicylic acid on sphingolipid metabolism

The phytohormone salicylic acid (SA) affects plant development and defense responses. Recent studies revealed that SA also participates in the regulation of sphingolipid metabolism, but the details of this regulation remain to beexplored. Here, we use in silico Flux Balance Analysis (FBA) with published microarray data to construct a whole-cell simulation model, including 23 pathways, 259 react...

متن کامل

Sulphur flux through the sulphate assimilation pathway is differently controlled by adenosine 5′-phosphosulphate reductase under stress and in transgenic poplar plants overexpressing γ-ECS, SO, or APR

Sulphate assimilation provides reduced sulphur for the synthesis of cysteine, methionine, and numerous other essential metabolites and secondary compounds. The key step in the pathway is the reduction of activated sulphate, adenosine 5'-phosphosulphate (APS), to sulphite catalysed by APS reductase (APR). In the present study, [(35)S]sulphur flux from external sulphate into glutathione (GSH) and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of experimental botany

دوره 65 20  شماره 

صفحات  -

تاریخ انتشار 2014